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 FOREWORD 

 

 

 

 Section 304(a) (l) of the Clean Water Act of 1977 (P.L. 95-217) requires the 

Administrator of the Environmental Protection Agency to publish water quality criteria that 

accurately reflect the latest scientific knowledge on the kind and extent of all identifiable effects 

on health and welfare that might be expected from the presence of pollutants in any body of 

water, including ground water.   Criteria contained in this document replace any previously 

published EPA aquatic life criteria for the same pollutant(s). 

 

 The term "water quality criteria" is used in two sections of the Clean Water Act, section 

304(a)(l) and section 303(c)(2).  The term has a different program impact in each section.  In 

section 304, the term represents a non-regulatory, scientific assessment of ecological effects.  

Criteria presented in this document are such scientific assessments.  If water quality criteria 

associated with specific stream uses are adopted by a state as water quality standards under 

section 303, they become enforceable maximum acceptable pollutant concentrations in ambient 

waters within that state.  Water quality criteria adopted in state water quality standards could 

have the same numerical values as criteria developed under section 304.  However, in many 

situations states might want to adjust water quality criteria developed under section 304 to reflect 

local environmental conditions and human exposure patterns.  Alternatively, states may use 

different data and assumptions than EPA in deriving numeric criteria that are scientifically 

defensible and protective of designated uses.  It is not until their adoption as part of state water 

quality standards that criteria become regulatory.  Guidelines to assist the states and Indian tribes 

in modifying the criteria presented in this document are contained in the Water Quality Standards 

Handbook (U.S. EPA 1994).  This handbook and additional guidance on the development of 

water quality standards and other water-related programs of this agency have been developed by 

the Office of Water. 

 

 This final document is guidance only.  It does not establish or affect legal rights or 

obligations.  It does not establish a binding norm and cannot be finally determinative of the 

issues addressed.  Agency decisions in any particular situation will be made by applying the 

Clean Water Act and EPA regulations on the basis of specific facts presented and scientific 

information then available. 

 

 

 

       Ephraim S. King 

       Director 

       Office of Science and Technology 
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Introduction
1
 

 

 Acrolein, also known as acrylaldehyde, allyl aldehyde and 2-propenal, has a wide-variety 

of applications. It is used directly as a biocide for aquatic weed control, and is currently 

registered under the trade name MAGNACIDE® H primarily for use in irrigation canals. This 

product is commonly applied to surface waters at a rate of 1-15 mg/L, which is much higher than 

the acutely toxic levels for most aquatic animals tested (Fritz-Sheridan 1982; U.S. EPA 2007).  

Acrolein is also used for algae, weed and mollusk control in recirculating process water systems; 

for slime control in the paper industry; to protect liquid fuels against microorganisms; and to 

control sulfate reducing bacteria that produce corrosive hydrogen sulfide in oilfield water 

systems  (IARC 1985; U.S. EPA 2007). It is also used for cross-linking protein collagen in 

leather tanning and for tissue fixation in histological samples. 

 Different forms of acrolein are widely used as an intermediate in the chemical industry 

(ATSDR 1989). The dimmer, which is prepared by a thermal, uncatalyzed reaction, has several 

applications including use as an intermediate for cross-linking agents, humectants, plasticizers, 

polyurethane intermediates, copolymers, and homopolymers and creaseproofing cotton. The 

monomer is utilized in synthesis via the Diels-Alder reaction as a dienophile or a diene. Acrolein 

is widely used in copolymerization, but its homopolymers do not appear commercially 

important. The copolymers of acrolein are used in photography, for textile treatment, in the paper 

industry, as builders in laundry and dishwasher detergents, and as coatings for aluminum and 

steel panels, as well as other applications.  

 Isolated acrolein is produced in a closed system by heterogeneously catalyzed gas-phase 

oxidation of propene.  Acrolein is also produced as a non-isolated intermediate during the 

manufacture of acrylic acid. In the 1990's, worldwide production was about 120,000 tons.  

Worldwide capacity was estimated at 125,000 tons/year, of which U.S. capacity was 35,000 

tons/year (WHO 2002). 

                                                 
1
A comprehension of the “Guidelines for Deriving Numerical National Water Quality Criteria for 

the Protection of Aquatic Organisms and their Uses” (Stephan et al. 1985), hereafter referred to as the 

Guidelines, is necessary to understand the following text, tables and calculations.  
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 Acrolein is a colorless liquid at room temperature with a structural formula of 

CH2=CHCHO and a molecular weight of 56.06 g/mol.  It melts at -86.95C, boils at 52.5 to 

53.5C and has a density of 0.8410 at 20C (Weast 1975). The vapor pressure at 20C is 29.3 to 

36.5 KPa, and its water solubility is 206 to 270 g/L at 20C (Standen 1967; WHO 2002).  It has 

an octanol/water partition coefficient (Log Kow) range of -0.01 to 0.90 (-0.01 is recommended by 

Karickhoff and Long 1995), and an organic carbon/water partition coefficient (Log Koc) of -2.19 

to 2.43 (WHO 2002).    

 A flammable liquid with a pungent odor, acrolein is an unstable compound that 

undergoes polymerization to the plastic solid disacryl, especially under light or in the presence of 

alkali or strong acid (Windholz 1976). It is the simplest member of the class of unsaturated 

aldehydes, and the extreme reactivity of acrolein is due to the presence of a vinyl group  

(H2C=H
-
) and an aldehyde group on such a small molecule (Standen 1967).  Additions to the 

carbon-carbon double bond of acrolein are catalyzed by acids and bases. The addition of 

halogens to this carbon-carbon double bond proceeds readily (Standen 1967).  

 Acrolein is released into the environment as a product of natural fermentation (WHO 

2002), as a volatile component of essential oils extracted from the wood of oak trees (Slooff et 

al. 1994), as a product of the incomplete combustion of organic matter (Lipari et al. 1984), and 

by photochemical oxidation of hydrocarbons in the atmosphere (Ghilarducci and Tjeerdema, 

1995).  As a product of the incomplete combustion of organic matter, acrolein is released by 

waste incinerators, furnaces, fireplaces, power plants, burning vegetation (e.g., forest fires), 

combustion of polyethylene plastics, and the cooking of food (WHO 2002). 

 Potential routes of acrolein degradation are via volatilization, microbial metabolism, and 

absorption into plants by cross-linking of protein.  Degradation products include 3-

hydroxypropanol, acrylic acid, allyl alcohol, propanol, propionic acid and oxalic acid.  A unique 

feature of 3-hydroxypropanol is that it is in equilibrium with acrolein, and thus does not fully 

degrade via hydrolysis.  Data are not available to characterize the rate of acrolein photolysis in 

water (U.S. EPA 2007). 

 Bowmer et al. (1974) described the loss of acrolein by volatilization and degradation in 

sealed bottles and tanks of freshwater. The amounts of acrolein dissipated after eight days were 

34 percent from the tank and 16 percent from the bottles.  The lack of turbulence in the tank 
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reduced acrolein loss by volatilization to 1/20 of what would be expected if volatilization were 

controlled only by resistance in the gas phase and any discrete surface layers. The primary 

degradation reaction is reversible hydrolysis to -hydroxypropionaldehyde, which is less volatile 

than acrolein (Geyer 1962).  

 Acrolein can enter the aquatic environment by its use as an aquatic herbicide, from 

industrial discharge, and from the chlorination of organic compounds in wastewater and drinking 

water treatment. It is often present in trace amounts in foods and is a component of smog, fuel 

combustion, wood, and possibly other fire and cigarette smoke.  

 The fate of acrolein in freshwater was observed in buffered solutions and in natural 

channel waters (Bowmer and Higgins 1976).  Equilibrium between acrolein and its degradation 

products was reached in the buffered solution following dissipation of 92 percent of parent 

compound, but in the natural channel waters there was no indication of equilibrium, with the 

dissipating reaction apparently continuing on to completion. Also, in the natural channel waters, 

the accumulation of a reaction (degradation) product was greater at higher initial acrolein 

concentration, and decay was rapid when acrolein concentrations fell below 2 to 3 mg/L. The 

initial period of slow decline preceding the rapid dissipation period was thought to be the result 

of microbiological processes.  Unlike earlier works (Bowmer et al. 1974), there was an 8- to 10-

fold increase in the observed dissipation rate as compared to the expected rate in two of four 

flowing water channels, suggesting major losses in volatilization and absorption.  A half-life of 

approximately seven hours was observed for acrolein in freshwater by Nordone et al. (1998), but 

the authors noted that the dissipation rate was both concentration and temperature dependent.  

The presence of viable microbial populations also heavily influences the acrolein degradation 

rates in freshwater systems (Smith et al. 1995). 

 In the marine environment, acrolein undergoes hydrolysis and oxidation to form -

hydroxypropanol and -hydroxy propionic acid (Smith 1962).  A half-life of less then 20 hours 

was reported by Rustenbil (1981). 

 Limited studies are available reporting the concentrations of acrolein in freshwater, and 

saltwater occurrence data are lacking. Analysis of Dayton, Ohio municipal effluents showed the 
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presence of acrolein in 6 of 11 samples, with concentrations ranging from 20 to 200 g/L (U.S. 

EPA 1977).  During the 1980s, acrolein was not detected in raw or treated Canadian water 

supplies, with the limit of detection ranging from 0.1-2.5 g/L (Environment Canada 

1989a,b,c,d; Otson 1987).  For 798 well or surface water samples collected from unspecified 

locations in the United States, acrolein was detected (detection limit not reported) in only 2 

samples, and the median concentration of acrolein in these samples was <14 g/L (Staples et al. 

1985). 

 Monitoring studies conducted after field application show that acrolein can be transported 

up to 61 miles from the point of application.  Reported half-lives ranged from 2 to 20 hours 

based on concentrations measured downstream of application.  Field studies also determined that 

acrolein volatilizes from treated waters and represents a source of exposure to non-target animals 

through inhalation (U.S. EPA 2007). 

 The mechanism of toxic action of acrolein, observed in mammalian and other systems, 

includes cell wall degradation and disrupting the cell’s ability to inactivate toxic chemicals 

(Siemering et al. 2008). Other effects on cell energetics include reduction in intracellular ATP 

levels in tissue culture (Monteil et al. 1999), and reduced beating activity of myocytes (Toraason 

et al. 1989). 

 A comprehension of the “Guidelines” for Deriving Numerical National Water Quality 

Criteria for the Protection of Aquatic Organisms and Their Uses" (Stephan et al. 1985), 

hereinafter referred to as the “Guidelines,” and the response to public comments concerning that 

document (U.S. EPA 1985) is necessary to understand the following text, tables and calculations.  

Results of such intermediate calculations as recalculated LC50s and Species Mean Acute Values 

(Table 1) and chronic values (Table 2) are given to four significant figures to prevent roundoff 

error in subsequent calculations, not to reflect the precision of the value. The criteria presented 

herein are the agency’s best estimate of maximum concentrations of the chemical of concern to 

protect most aquatic organisms, or their uses, from any unacceptable short- or long-term effects.  

Whenever adequately justified, a national criterion may be replaced by a site-specific criterion 

(U.S. EPA 1983a), which may include not only site-specific criterion concentrations (U.S. EPA 
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1983a), but also site-specific durations of averaging periods and site-specific frequencies of 

allowed excursions (U.S. EPA 1991).  The latest comprehensive literature search for this 

document was conducted in June, 2009, with some new information also included.  

 

Acute Toxicity to Aquatic Animals 

 

 Data that are suitable, according to the “Guidelines,” for the derivation of a freshwater 

Final Acute Value (FAV) are included in Table 1.  Fifteen species representing fourteen genera 

were tested with acrolein to determine its acute toxicity to these species (Table 3).  Species Mean 

Acute Values (SMAV) ranged from 7 g/L for the African clawed frog (Xenopus laevis) to 

5,920 g/L for an insect (Peltoperia maria).  The white sucker (Catostomus commersoni) was 

the second most sensitive species tested, with a SMAV of 14 g/L.  Rainbow trout 

(Oncorhynchus mykiss) and the bluegill sunfish (Lepomis macrochirus) were the third and fourth 

most sensitive species tested, with SMAVs of 16 and 27.19 g/L, respectively. 

 The least sensitive group of freshwater species to acrolein toxicity was invertebrates.  The 

insect (Peltoperia maria) was the most tolerant to acrolein with a SMAV of 5,920 g/L, 

followed by the midge (Chironomus riparius) with a SMAV of 510 g/L, the snail (Physa 

heterostropha) with a SMAV of 368 g/L, and the scud (Gammarus minus) with a SMAV of 

180 g/L.  The snail (Aplexa hypnorum) and midge (Tanytarsus dissimilis) had SMAVs of >151 

g/L acrolein each.  The planktonic crustacean, Daphnia magna, was the most acutely sensitive 

invertebrate to acrolein with an SMAV of <39.76.  

 Freshwater SMAVs and Genus Mean Acute Values (GMAV) were derived from 

available acute values (Tables 1 and 3).  GMAVs were available for 14 genera; the most 

sensitive was the amphibian, Xenopus, which was 846 times more sensitive than the least 

sensitive species, an insect, Peltoperia (Figure 1).  The four most sensitive genera were within a 

factor of 4.1 of one another.  The freshwater FAV for acrolein is 5.920 g/L and was calculated 

using the procedure described in the “Guidelines” and the GMAVs in Table 3.  The FAV is 

slightly lower than the lowest freshwater SMAV of 7 g/L for the African clawed frog, X. laevis.  
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 The acute toxicity of acrolein to saltwater animals has been tested with only four species 

(Table 1).  The most sensitive was the brown shrimp (Penaeus aztecus) with a SMAV of 100 

g/L, followed by the eastern oyster (Crassostrea virginica), with a SMAV of 106 g/L.  The 

two most tolerant species were the mysid (Americamysis bahia) and the sheepshead minnow 

(Cyprinodon variegatus), with SMAV values of 500 and 428 g/L acrolein, respectively 

(Figure 2). 

 Since SMAVs are available for only three of the eight required families as specified in 

the Guidelines (Stephan et al. 1985), a saltwater FAV cannot be calculated for acrolein at this 

time. 

 

Chronic Toxicity to Aquatic Animals 

 

 The available data that are usable according to the “Guidelines” concerning the chronic 

toxicity of acrolein are presented in Table 2a.  All tests were conducted with measured 

concentrations of acrolein.  Macek et al. (1976) conducted the only freshwater invertebrate 

chronic test.  Based on the cumulatively reduced survival of D. magna through three generations, 

a chronic value of 23.83 g/L was obtained from chronic limits of 16.9 and 33.6 g/L (Tab1e 

2a).  The acute value for this species by the same investigators was 57 g/L, and this results in 

an acute-chronic ratio (ACR) of 2.392 (Table 2b).  

 Macek et al. (1976) also conducted a life cycle toxicity test with acrolein and the fathead 

minnow, P. promelas, that resulted in a chronic value of 11.4 g/L based on an EC20 analysis of 

the data (Table 2a). Survival of newly-hatched second generation fathead minnow fry was 

significantly reduced at 41.7 g/L.  A dilutor malfunction killed or severely stressed the fish at 

an intermediate concentration (20.8 g/L), so no second generation fish were produced.  A 6-day 

incipient LC50 value of 84 g/L was the only acute value reported for this species by the same 

authors using a flow-through test with unmeasured concentrations (Table 6).  

 Two additional chronic tests have been conducted with acrolein and the fathead minnow.  

Sabourin (1986, 1987) conducted a flow-through measured early life-stage (ELS) toxicity test 
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with acrolein and P. promelas in a reverse osmosis-treated and well water blended mixture. 

Embryos and larvae were exposed in a continuous-flow diluter for a total of 32 days to five 

concentrations of acrolein that ranged from 3.8 to 66.8 g/L.  The no-observed-effects-

concentration (NOEC) and lowest-no-observed-effects-concentration (LOEC) for survival were 

recorded at 9.1 and 30.8 g/L, respectively, with a resultant chronic value of 16.74 g/L (Table 

2a).  The ACR of 1.774 was calculated using the acute value of 29.7 g/L from a companion 

study and dividing by the chronic value of 16.74 g/L (Table 2b). 

 Spehar (1989) conducted a 32-day flow-through measured ELS toxicity test with acrolein 

and P. promelas in filtered Lake Superior water.  Survival, the most sensitive endpoint, was 

significantly reduced at 35 g/L compared to controls, but not at acrolein concentrations of 14 

g/L and lower.  Based upon survival, the chronic value was 22.14 g/L.  Spehar (1989) also 

determined an acute value of 27 g/L for this species, and when divided by the chronic value of 

22.14 g/L, yields an ACR of 1.220 (Table 2b). 

  A 32-day ELS test was also conducted with embryos and fry of the flagfish, Jordanella 

floridae in filtered Lake Superior water (Spehar 1989).  Five acrolein exposure concentrations 

were tested which ranged from 1.4 to 42 g/L in the flow-through measured test.  Percent hatch 

was not affected by any of the acrolein concentrations.  At the end of the test, survival was not 

significantly reduced in any of the exposure concentrations; however, growth (weight) was 

significantly reduced in the highest exposure concentration (42 g/L) relative to the controls.  

Based upon growth, the chronic limits were 16 and 42 g/L, and the resultant chronic value for 

flagfish was 25.92 g/L.  A companion acute test was conducted in the study, and division of the 

acute value (51 g/L) by the chronic value (25.92 g/L) yields an ACR of 1.968 for flagfish 

(Table 2b). 

 Three valid freshwater ACRs are available for acrolein using the fourth, sixth and seventh 

most acutely sensitive tested species of freshwater animals (Table 3).  Two ACRs were available 

for the fathead minnow, P. promelas, which differed by a factor of approximately 1.5 times.  The 

geometric mean of these two values is 1.471.  Since the three valid ACRs (1.471, 1.968 and 

2.392) differed by only a factor of 1.6 (Table 3), the Final Acute to Chronic Ratio (FACR) is 
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calculated as the geometric mean of the three values, or 1.906.  These data show that there is 

little difference in concentrations between the acute and chronic effects of acrolein on D. magna 

and the tested fish species. As stipulated in the Guidelines (Stephan et al. 1985), if the most 

appropriate species mean ACRs are less than 2.0, acclimation has probably occurred during the 

chronic test, and the FACR should be assumed to be 2.0. Thus the FACR for acrolein is 2.0.  It 

appears from available data (Figure 3) that all tested freshwater species will be protected from 

adverse effects due to chronic acrolein exposure by the freshwater Chronic Value (3.0 g/L).   

 

Toxicity to Aquatic Plants 

 

 Four acceptable tests are available with freshwater plant species exposed to acrolein in 

tests lasting from 5 to 14 days (Table 4).  Even though the exposures were measured in the 

studies conducted by Hughes and Alexander (1992a,b,c,d,e), the authors reported nominal effect 

concentrations because the acrolein concentrations at test termination was less than the detection 

limit.  Based on this approach, the adverse effect concentrations from these freshwater tests 

ranged from 36 g/L for Anabaena flos-aquae to 72 g/L for the duckweed, Lemna gibba.  

 Toxicity tests with acrolein have been conducted using a single saltwater plant species 

(Table 4).  The diatom, Skeletonema costatum, had a five-day EC50 value of 28 g/L acrolein 

based on cell density.  

 Additional fresh- and saltwater plant information is included with "Other Data."  These 

published studies describe the use of acrolein to control aquatic macrophytes and algae (see 

Table 6); no appropriate plant effect data are available. In some cases, test methods were 

insufficiently described to evaluate reported results. In others, because of the methods used, no 

actual exposure concentration under field conditions could be calculated.  In a few instances, 

results were reported where acrolein was used in the control of the weeds, but no quantitative 

measurements were made (Ferguson et al. 1965, Unrau et al. 1965, van Overbeek et al. 1959). 

 A Final Plant Value, as defined in the Guidelines, cannot be obtained because no test in 

which the endpoint was biologically important and the concentrations of acrolein were 
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sufficiently measured has been conducted with an important aquatic plant species. 

 

Bioaccumulation 

 

 One study was conducted to measure the bioconcentration of acrolein in freshwater 

animals that, according to the “Guidelines,” meet the requirements for inclusion in this section of 

the document (Table 5).  Barrows et al. (1978) measured the whole body burden in juvenile 

bluegill (Lepomis macrochirus) exposed to 13.1 g/L acrolein for 28 days.  The half-life in 

tissue was greater than seven days, and thin-layer chromatography was used to verify 

concentrations.  Lipid concentrations were measured (Johnson 1980) for the test fish and the 

bioconcentration results were lipid normalized, which increased the bioconcentration factor from 

344 to 7,167.  

 No bioconcentration factors are available for saltwater species based on the literature 

search conducted.  

 No U.S. FDA action level or other maximum acceptable concentration in tissue, as 

defined in the “Guidelines,” is available for acrolein.  Therefore, a Final Residue Value cannot 

be calculated. 

 

Other Data 

 

 Additional data on the lethal and sublethal effects of acrolein on freshwater species that 

do not comply with the data requirements described in the “Guidelines” for inclusion in other 

tables are presented in Table 6.  Reduced DNA synthesis of the green alga, Dunaliella bioculata, 

was observed at 100 g/L (Marano and Puiseux-Dao 1982), and various species of aquatic 

weeds were damaged or destroyed fol1owing treatment with 500 to 25,000 g/L of acrolein 

(Ferguson et al. 1965; Fritz-Sheridan 1982; Unrau et al. 1965; van Overbeek et al. 1959).  

Bringmann and Kuhn (1978) determined that the 72-hour toxic concentration to the protozoan, 

Entosiphon sulcatum, was 850 g/L of acrolein.  
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 Ninety-eight percent of Australorbis glabratus adult snails and 100 percent of snail 

embryos died after a 24-hour exposure to 10,000 g/L (Ferguson et al. 1961), and the 24-hour 

EC50 of acrolein exposed Asiatic clams (Corbicula fluminea) was 300 g/L (Foster 1981).  

Acutely fed and chronic unmeasured toxicity values were determined for the cladoceran, 

Ceriodaphnia dubia (Union Carbide Corporation 1997), yielding a ACR value of 2.857 

(400140 g/L), which is very similar to the ACR value of 2.392 determined for Daphnia 

magna (Macek et al. 1976).  Mayfly nymphs (Ephemerella walkeri) were observed to avoid 

acrolein concentrations greater than 100 g/L (Folmar 1978). 

 Ten short-term exposures (either 24 or 48 hours) with seven fish species yielded acute 

toxicity values in the range of 46 to 140 g/L. Static tests with unmeasured concentrations were 

run by Bond et al. (1960), Folmar (1976), Louder and McCoy (1962) and Bridie et a1. (1979). 

The studies of Burdick et al. (1964) and Macek et al. (1976) were performed under flow-through 

conditions with unmeasured concentrations.  The value from Bartley and Hattrup (1975), who 

reported 32 percent mortality of rainbow trout in 48 hours at 48 g/L, was the only value based 

on a flow-through exposure with measured acrolein concentrations.  Because of differences in 

test methods and the volatility of acrolein, no meaningful comparison of relative sensitivity 

among the fish species is possible. 

 The avoidance response of rainbow trout at 100 g/L is above reported acute levels 

(Folmar 1976).  Folmar (1980) reported flavor impairment of rainbow trout flesh for up to four 

days after a four-hour exposure to 90 g/L.  

 Additional data on the lethal and sublethal effects of acrolein on saltwater species that do 

not comply with data requirements described in the “Guidelines” for inclusion in other tables are 

presented in Table 6.  The 48-hour LC50 values for three saltwater species are in the range from 

240 to 2,100 g/L, with the juvenile longnose killifish, Fundulus similis, being the most 

sensitive.  Rustenbil (1981) observed detachment of the mussel, Mytilus edulis, at a 

concentration of 600 g/L acrolein. 
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Unused Data 

 

 Based on the requirements set forth in the guidelines (Stephan et al. 1985), the following 

studies are not acceptable for the following reasons and are classified as unused data.  Some data 

concerning the effects of acrolein on aquatic organisms and their uses were not used because the 

tests were conducted in mixtures of chemicals (i.e., Albarino et al. 2007; Blondeau 1959; 

Bowmer and Smith 1984; Corbus 1982; Donohue et al. 1966; Hayworth and Melwani 2004; 

McLarty 1960; Power 1982; Snyder-Conn 1997) or a control was not included with the study 

(i.e., Bowmer and Sainty 1977; Bowmer et al. 1979).   

 Results were not used when the test organism or the test material were not adequately 

described (i.e., Baker Performance Chemical 1991; Hopf and Muller 1962; Juhnke and 

Luedemann 1978; Mayer 1974; Tchan and Chiou 1977), the organism tested is not resident to 

North America (i.e., Alabaster 1969), the site was previously contaminated (i.e., Underwood and 

Paterson 1993), or the test material was just sprayed on the plants (i.e., Blackburn 1963; 

Siemering et al. 2008). 

 Baker Performance Chemical (1991), Beauchamp et al. (1985), Butler (1965a,b), Eisler 

(1994), Epstein and Legator (1971), Folmar (1977), Freidig et al. (1999), Grahl (1983), McKim 

(1977), Russom (1997), Seward et al. (2001), Siemering et al. (2003) and Yarbrough and Schultz 

(2007) compiled data from other sources, and non-English studies were not translated (i.e., 

Baran-Marano and Izard 1968; Bringmann and Kuhn 1980, 1981; Bringmann et al. 1980). Data 

were not used if there were no interpretable concentration, time, or response data, or if the 

toxicity test evaluated only a limited number of test organisms (<six) or less than three exposure 

concentrations (i.e., Applegate et al. 1957; Bentivegna and Fernandez 2005; Bentivegna et al. 

2004; Frank et al. 1961; Jordan et al. 1962; Kobbia 1982; MacPhee and Ruelle 1969; Nordone et 

al. 1998; Peterson et al. 1994; St. Amant et al. 1964).  

 Data were not used when organisms were dosed by injection (i.e., McKim et al. 1987) or 

gavage (i.e., Loeb and Kelly 1963), or if no useable data on acrolein toxicity or bioconcentration 

was presented (i.e., Anderson 1946; Coello and Khan 1998; Dean et al. 2004; Geiger et al. 1990; 
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Johnson and Epel 1983; Rebhun and Ben-Amotz 1986; Union Carbide Chemical and Plastics Co. 

1991; Woodiwiss and Fretwell 1974; Yarzhombek et al. 1991). Dypbukt et al. (1989), Horton et 

al. (1997), Minko et al. (2008), Seiner et al. (2007), Szadkowski and Myers (2008) and 

Thompson and Burcham (2008) only exposed enzymes, excised or homogenized tissue, or cell 

cultures. 

  

Summary 

 

 Sufficient data are available to derive freshwater criteria for acrolein, but the lack of data 

precludes the estimation of saltwater criteria, a final plant value and a residue value.  Additional 

studies are needed to provide the necessary data to satisfy the criteria derivation requirement as 

currently specified in the Guidelines.   

 Acute toxicity of acrolein was tested in fifteen species representing fourteen genera of 

freshwater organisms.  Toxicity values ranged from 7 g/L for the African clawed frog Xenopus 

laevis to 5,920 g/L for the insect Peltoperia maria.  Of the four most sensitive freshwater 

species tested, one was an amphibian and three were fish species (Table 3 and Figure 1).  No 

relationships have been demonstrated between water quality characteristics (such as hardness 

and pH) and toxicity.  The least sensitive group of freshwater species to acrolein toxicity was 

invertebrates.  The freshwater Final Acute Value (FAV) is 5.920 g/L, which is slightly lower 

than the LC50 for the most sensitive tested species, X. laevis.  Acute toxicity has been tested with 

only four species of saltwater organisms (Table 1 and Figure 2).  Species Mean Acute Values 

ranged from 100 g/L for the brown shrimp (Penaeus aztecus) to 500 g/L for the mysid 

(Americamysis bahia).  Since SMAVs are available for only three of the eight required families 

as specified in the Guidelines (Stephan et al. 1985), a saltwater FAV cannot be calculated for 

acrolein at this time. 

 Chronic toxicity of acrolein was tested in three freshwater species, but no saltwater 

species (Table 2a and Figure 3).  More studies are needed for marine animals in order to estimate 

acute and chronic saltwater criteria for acrolein.  The most chronically sensitive freshwater 
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species tested was the fathead minnow, Pimephales promelas, with a Chronic Value (CV) of 

11.4 g/L based on reduced survival (Macek et al. 1976).  Two additional studies with this 

species had measured CVs of 16.74 g/L (Sabourin 1986) and 22.14 g/L (Spehar 1989), also 

based upon a survival endpoint.  The remaining freshwater fish tested, the flagfish Jordanella 

floridae, had a CV of 25.92 g/L based on growth (Spehar 1989).  The only freshwater 

invertebrate tested chronically was the cladoceran Daphnia magna, with a CV of 23.83 g/L 

based on survival (Macek et al. 1976).  Data were available to calculate a Final Acute-Chronic 

Ratio (FACR) using three freshwater species: D. magna, the fathead minnow and the flagfish.  

Since the three valid ACRs (2.392, 1.471 and 1.968) differed by only a factor of 1.6, the FACR 

is calculated as the geometric mean of the three values, or 1.906.  These data show that there is 

little difference in concentrations between the acute and chronic effects of acrolein on D. magna 

and the tested fish species. As stipulated in the Guidelines (Stephan et al. 1985), if the most 

appropriate species mean ACRs are less than 2.0, acclimation has probably occurred during the 

chronic test, and the FACR should be assumed to be 2.0. Thus the FACR for acrolein is 2.0.  It 

appears from available data that all tested freshwater species will be protected from adverse 

effects due to acrolein by the freshwater Chronic Value (Figure 3).   

 Acceptable data on the toxicity of acrolein to freshwater and saltwater plants are 

available for five species.  Freshwater algae are affected by concentrations of acrolein as low as 

36 g/L, based on data for three species.  The duckweed, Lemna gibba, was similarly affected at 

72 g/L acrolein, as was the marine diatom, Skeletonema costatum, with a EC50 value of 28 

g/L.  

 One study estimated the bioconcentration of acrolein in bluegill, with a lipid normalized 

freshwater bioconcentration factor of 7,167 (Barrows et al. 1978).  Bioconcentration factors are 

not available for saltwater species based on the literature search conducted.  No U.S. FDA action 

level or other maximum acceptable concentration in tissue, as defined in the “Guidelines,” is 

available for acrolein.  Therefore, a Final Residue Value cannot be calculated. 
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National Criteria 

 

 The procedures described in the “Guidelines for Deriving Numerical National Water 

Quality Criteria for the Protection of Aquatic Organisms and Their Uses” (Stephan et al. 1985) 

indicate that, except possibly where a locally important species is very sensitive, freshwater 

aquatic organisms and their uses should not be affected unacceptably if the one-hour average 

concentration of acrolein does not exceed 3.0 g/L more than once every three years on the 

average, and if the four-day average concentration of acrolein does not exceed 3.0 g/L more 

than once every three years on the average. 

 Since SMAVs are available for only three of the eight required families as specified in 

the Guidelines (Stephan et al. 1985), a saltwater FAV cannot be calculated at this time for 

acrolein.  Likewise, the lack of chronic data precludes the development of a saltwater chronic 

criterion at this time. 

 

Implementation 

 

 As discussed in the Water Quality Standards Regulation (U.S. EPA 1983b) and the 

Foreword to this document, a water quality criterion for aquatic life has regulatory impact only 

after it has been adopted in a state or tribal water quality standard.  Such a standard specifies a 

criterion for a pollutant that is consistent with a particular designated use.  With the concurrence 

of the U.S. EPA, states and tribes designate one or more uses for each body of water or segment 

thereof and adopt criteria that are consistent with the use(s) (U.S. EPA 1987, 1994).  In each 

standard a state or tribe may adopt the national criterion, if one exists, or, if adequately justified, 

a site-specific criterion (if the site is an entire state, the site-specific criterion is also a state-

specific criterion). 

 Site-specific criteria may include not only site-specific criterion concentrations (U.S. 

EPA 1994), but also site-specific, and possibly pollutant-specific, durations of averaging periods 

and frequencies of allowed excursions (U.S. EPA 1991).  The averaging periods of “one hour” 



 

 

 15  

 

and “four days” were selected by the U.S. EPA on the basis of data concerning how rapidly some 

aquatic species react to increases in the concentrations of some pollutants, and “three years” is 

the Agency’s best scientific judgment of the average amount of time aquatic ecosystems should 

be provided between excursions (Stephan et al. 1985; U.S. EPA 1991).  However, various 

species and ecosystems react and recover at greatly different rates.  Therefore, if adequate 

justification is provided, site-specific and/or pollutant-specific concentrations, durations, and 

frequencies may be higher or lower than those given in national water quality criteria for aquatic 

life. 

 Use of criteria, which have been adopted into state or tribal water quality standards, for 

developing water quality-based permit limits requires selection of an appropriate wasteload 

allocation model. Although dynamic models are preferred for the application of these criteria 

(U.S. EPA 1991), limited data or other considerations might require the use of a steady-state 

model (U.S. EPA 1986). Guidance on mixing zones and the design of monitoring programs is 

also available (U.S. EPA 1987, 1991). 
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Figure 1.  Ranked Summary of Acrolein GMAVs - Freshwater. 
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Figure 2.  Ranked Summary of Acrolein GMAVs - Saltwater. 
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Figure 3.  Chronic Toxicity of Acrolein to Aquatic Animals. 
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Table 1.  Acute Toxicity of Acrolein to Aquatic Animals. 
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Species 

 

 

Method
a
 

 

 

Chemical 

LC50  

or EC50  

(µg/L) 

Species Mean 

Acute Value
b
 

(µg/L) 

 

 

Reference 

 

FRESHWATER SPECIES 

Snail (adult), 

Aplexa hypnorum 

F, M - >151 >151 Holcomb et al. 1987 

Snail (juvenile), 

Physa heterostropha 

S, U - 368 368 Horne and Oblad 

1983 

Cladoceran,  

Daphnia magna 

S, U 99% 57 - Macek et al. 1976 

Cladoceran, 

Daphnia magna 

S, U - 80 - USEPA 1978 

Cladoceran, 

Daphnia magna 

S, U - 93 - Randall and Knopp 

1980 

Cladoceran  

(<24-hr old), 

Daphnia magna 

S, U 80% 83 - LeBlanc 1980 

Cladoceran  

(<24-hr old), 

Daphnia magna 

F, M - 51 - Holcomb et al. 1987 

Cladoceran, 

Daphnia magna 

F, M 96.4% <31 <39.76 Blakemore 1990 

Scud (juvenile), 

Gammarus minus 

S, U - 180 180 Horne and Oblad 

1983 

Insect (juvenile), 

Peltoperia maria 

S, U - 5,920 5,920 Horne and Oblad 

1983 

Midge (juvenile), 

Chironomus riparius 

S, U - 510 510 Horne and Oblad 

1983 

Midge (3
rd

 and 4
th

 instar), 

Tanytarsus dissimilis 

F, M - >151 >151 Holcomb et al. 1987 

Coho salmon  

(12-17 months old), 

Oncorhynchus kisutch 

S, U - 68 68 Lorz et al.1979 

Rainbow trout  

(45.7 mm), 

Oncorhynchus mykiss 

S, U - 74 - Birge et al. 1982 

Rainbow trout (juvenile), 

Oncorhynchus mykiss 

S,  U - 180 - Horne and Oblad 

1983 



Table 1.  Acute Toxicity of Acrolein to Aquatic Animals (continued). 
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Species 

 

 

Method
a
 

 

 

Chemical 

LC50  

or EC50  

(µg/L) 

Species Mean 

Acute Value
b
 

(µg/L) 

 

 

Reference 

 

FRESHWATER SPECIES 

 

Rainbow trout (juvenile), 

Oncorhynchus mykiss 

R, M - 38 - Venturino et al. 2007 

Rainbow trout, 

Oncorhynchus mykiss 

F, M 96.4% <31 - Bowman 1990a 

Rainbow trout (2.5 g), 

Oncorhynchus mykiss 

F, M - 16 16 Holcomb et al. 1987 

Fathead minnow (adult), 

Pimephales promelas 

S, U - 320 - Union Carbide Corp. 

1974 

Fathead minnow  

(43.2 mm), 

Pimephales promelas 

S, M - 45 - Birge et al. 1982 

Fathead minnow  

(42-46 day old), 

Pimephales promelas 

S, U 99% 14.0 - Geiger et al. 1986 

Fathead minnow  

(32-day old), 

Pimephales promelas 

R, M 99% 19.5 - Geiger et al. 1986 

Fathead minnow  

(43.2 mm), 

Pimephales promelas 

F, M - 61 - Birge et al. 1982 

Fathead minnow, 

Pimephales promelas 

F, M - 29.7 - Sabourin 1986 

Fathead minnow  

(1-day old & 30-day old), 

Pimephales promelas 

F, M 97% 27 - Spehar 1989 

Fathead minnow (0.4 g), 

Pimephales promelas 

F, M - 14 28.77 Holcomb et al. 1987 

White sucker (3.9 g), 

Catostomus commersoni 

F, M - 14 14 Holcomb et al. 1987 

Flagfish (1-day old), 

Jordanella floridae 

F, M 97% 60 - Spehar 1989 

Flagfish (30-day old), 

Jordanella floridae 

F, M 97% 51 55.32 Spehar 1989 



Table 1.  Acute Toxicity of Acrolein to Aquatic Animals (continued). 
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Species 

 

 

Method
a
 

 

 

Chemical 

LC50  

or EC50  

(µg/L) 

Species Mean 

Acute Value
b
 

(µg/L) 

 

 

Reference 

FRESHWATER SPECIES 

 

Bluegill (1.0 g),  

Lepomis macrochirus 

S, U - 100 - Louder and McCoy 

1962 

Bluegill,  

Lepomis macrochirus 

S, U  90 - USEPA 1978 

Bluegill (young of year), 

Lepomis macrochirus 

S, U 80% 90 - Buccafusco et al. 

1981 

Bluegill,  

Lepomis macrochirus 

F, M - 33 - Holcomb et al. 1987 

Bluegill,  

Lepomis macrochirus 

F, M 96.4% 22.4 27.19 Bowman 1990b 

Largemouth bass (1.5 g), 

Micropterus salmoides 

S, U - 160 160 Louder and McCoy 

1962 

African clawed frog 

(tadpole), 

Xenopus laevis 

F, M - 7 7 Holcomb et al. 1987 

 

SALTWATER SPECIES 
 

Eastern oyster, 

Crassostrea virginica 

F, M 94.7% 106 106 Bettencourt 1994a 

Mysid, 

Americamysis bahia 

F, M 94.7% 500 500 Bettencourt 1994b 

Brown shrimp (adult), 

Penaeus aztecus 

F, U - 100 100 Butler 1965a 

Sheepshead minnow, 

Cyprinodon variegatus 

F, M 94.7% 428 428 Bettencourt 1994c 

a
 S = static; R = renewal; F = flow-through; M = measured; U = unmeasured. 

b
 Each Species Mean Acute Value was calculated from the associated underlined number(s) in the preceding 

  column based on recommendations in the Guidelines (e.g., a flow-through measured test value takes 

  precedence over static tests).   
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Table 2a.  Chronic Toxicity of Acrolein to Aquatic Animals. 

 

 

 

 

Species 

 

 

Test
a
 

 

 

Chemical 

Chronic 

Limits 

(µg/L)
b
 

Chronic 

Value 

(µg/L) 

 

 

Reference 

FRESHWATER SPECIES 
 

Cladoceran,  

Daphnia magna 

LC 99% 16.9-33.6 23.83 Macek et al. 1976 

Fathead minnow, 

Pimephales promelas 

LC 99% - 11.4
c
 Macek et al. 1976 

Fathead minnow, 

Pimephales promelas 

ELS - 9.1-30.8 16.74 Sabourin 1986, 1987 

Fathead minnow, 

Pimephales promelas 

ELS 97% 14-35 22.14 Spehar 1989 

Flagfish, 

Jordanella floridae 

ELS 97% 16-42 25.92 Spehar 1989 

       

SALTWATER SPECIES 

 

 

     

a
  LC = life-cycle or partial life-cycle; ELS = early life-stage. 

b
  Based upon measured concentrations of acrolein. 

c
  Based on EC20 analysis of data (see text) 
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Table 2b. Acute-Chronic Ratios. 
 

 

Acute-Chronic Ratios 

 

 

 

 Species 

 

Acute Value 

  (µg/L)  

 

Chronic Value 

   (µg/L)  

 

 

Ratio 

 

 

Reference 

Cladoceran,  

Daphnia magna 

57 23.83 2.392 Macek et al. 1976 

Fathead minnow, 

Pimephales promelas 

29.7 16.74 1.774 Sabourin 1986, 1987 

Fathead minnow, 

Pimephales promelas 

27 22.14 1.220 Spehar 1989 

Flagfish, 

Jordanella floridae 

51 25.92 1.968 Spehar 1989 

 

 



Table 3.  Ranked Genus Mean Acute Values with Species Mean Acute-Chronic Ratios 
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 Rank
a
 

Genus Mean 

Acute Value 

   (µg/L)   

 

 

Species 

Species Mean 

Acute Value 

  (µg/L)
b
     

Species Mean 

Acute-Chronic 

  Ratio
c
     

 

FRESHWATER SPECIES 

14 5,920 Insect, 

Peltoperia maria 

5,920 - 

13 510 Midge, 

Chironomus riparius 

510 - 

12 368 Snail, 

Physa heterostropha 

368 - 

11 180 Scud, 

Gammarus minus 

180 - 

10 >151 Snail, 

Aplexa hypnorum 

>151 - 

9 >151 Midge, 

Tanytarsus dissimilis 

>151 - 

8 160 Largemouth bass, 

Micropterus salmoides 

160 - 

7 55.32 Flagfish, 

Jordanella floridae 

55.32 1.968 

6 <39.76 Cladoceran, 

Daphnia magna 

<39.76 2.392 

5 32.98 Coho salmon, 

Oncorhynchus kisutch 

68 - 

  Rainbow trout, 

Oncorhynchus mykiss 

16 - 

4 28.77 Fathead minnow, 

Pimephales promelas 

28.77 1.471 

3 27.19 Bluegill, 

Lepomis macrochirus 

27.19 - 

2 14 White sucker, 

Catostomus commersoni 

14 - 

1 7 African clawed frog, 

Xenopus laevis 

7 - 

a
 Ranked from the most resistant to the most sensitive based on Genus Mean Acute Value. 

b
 From Table 1. 

c
 From Table 2b. 



Table 3.  Ranked Genus Mean Acute Values with Species Mean Acute-Chronic Ratios (continued). 
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SALTWATER SPECIES 
 

 

 

 Rank
a
 

Genus Mean 

Acute Value 

   (µg/L)   

 

 

Species 

Species Mean 

Acute Value 

  (µg/L)
b
     

Species Mean 

Acute-Chronic 

  Ratio
c
     

4 500 Mysid, 

Americamysis bahia 

500 - 

3 428 Sheepshead minnow, 

Cyprinodon variegatus 

428 - 

2 106 Eastern oyster, 

Crassostrea virginica 

106 - 

1 100 Brown shrimp, 

Penaeus aztecus 

100 - 

a
 Ranked from the most resistant to the most sensitive based on Genus Mean Acute Value. 

b
 From Table 1. 

c
 From Table 2b. 

                                 

 

 

 

 

Fresh Water 

 

 Final Acute Value = 5.920 g/L 

 Criterion Maximum Concentration = 5.920/2 = 3.0 g/L 

 Final Acute-Chronic Ratio = 2.0 (see text) 

 Final Chronic Value = (5.920 g/L)/2.0 = 3.0 g/L 

 

 

Salt Water 

 

 Final Acute Value = cannot be calculated 

 Criterion Maximum Concentration = cannot be calculated 

 Final Acute-Chronic Ratio = NA 

 Final Chronic Value =cannot be calculated 
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Table 4.  Toxicity of Acrolein to Aquatic Plants. 

 

 
 

Species 

 

Chemical 

 

Method
a
 

Duration 

(days) 

 

Effect 

Concentration
b
 

(µg/L) 

 

Reference 

 
FRESHWATER SPECIES 

 
Blue green alga, 

Anabaena flos-aquae 

95% S, M 5 EC50 
(cell density) 

36 Hughes and 

Alexander 

1992a 

Green alga, 

Pseudokirchneriella 

subcapitata 

95% S, M 5 EC50 
(cell density) 

44 Hughes and 

Alexander 

1992b 

Diatom, 

Navicula pelliculosa 

95% S, M 5 EC50 
(cell density) 

47 Hughes and 

Alexander 

1992c 

Duckweed, 

Lemna gibba 

95% S, M 14 EC50 
(frond #) 

72 Hughes and 

Alexander 

1992d 

 

SALTWATER SPECIES 

 

Diatom, 

Skeletonema costatum 

95% S, M 5 EC50 
(cell density) 

28 Hughes and 

Alexander 

1992e 
a
 S = static; R = renewal; F = flow-through; M = measured; U = unmeasured. 

b
 Effect based on nominal concentration of active ingredient at test initiation. Concentration of test material 

  decreased to non-detectable levels by test termination. 
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 Table 5.  Bioaccumulation of Acrolein by Aquatic Organisms. 

  

 

 

 

Species 

 

 

Chemical 

Conc. 

in  

Water  

(g/L)a 

 

Duration 

 (days)  

 

 

Tissue 

 

Percent 

Lipid  

  

 

 BCFb  

Normalized 

 BCFc 

 

 

Reference 

 

FRESHWATER SPECIES 
 

Bluegill 

(0.37-0.94 g), 

Lepomis 

macrochirus 

- 13.1 28 Whole 

body 

4.8 344 7,167 Barrows et al. 1978, 

Veith et al. 1980 

Johnson 1980 

 

SALTWATER SPECIES 
 

         

a Measured concentration of acrolein. 
b Bioconcentration factor (BCF) is based on the measured concentration of acrolein in water and in tissue. 
c BCF was normalized to 1% lipid by dividing the BCF by the percent lipid. 

 

 

 

 
 



Table 6.  Other Data on Effects of Acrolein on Aquatic Organisms. 
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Species 

 

 

Chemical 

 

 

Duration 

 

 

Effect 

 

Concentration 

 (g/L)      

 

 

Reference      

FRESHWATER SPECIES 
 

Blue-green alga, 

Anabaena sp. 

92% 24 hr IC50 @ 25C 

(photosynthesis) 

690 Fritz-Sheridan 

1982 

Green alga, 

Cladophora glomerata 

92% 24 hr IC50 @ 15C 

(photosynthesis) 

680 Fritz-Sheridan 

1982 

Green alga, 

Cladophora glomerata 

92% 24 hr IC50 @ 20C 

(photosynthesis) 

1,070 Fritz-Sheridan 

1982 

Green alga, 

Cladophora glomerata 

92% 24 hr IC50 @ 25C 

(photosynthesis) 

1,000 Fritz-Sheridan 

1982 

Green alga, 

Cladophora glomerata 

92% 24 hr IC50 @ 30C 

(photosynthesis) 

760 Fritz-Sheridan 

1982 

Green alga, 

Dunaliella bioculata 

- 48 hr Reduced DNA 

synthesis 

100 Marano and 

Puiseux-Dao 1982 

Green alga, 

Enteromorpha intestinalis 

92% 24 hr IC50 @ 20C 

(photosynthesis) 

2,500 Fritz-Sheridan 

1982 

Green alga, 

Enteromorpha intestinalis 

92% 24 hr IC50 @ 25C 

(photosynthesis) 

1,800 Fritz-Sheridan 

1982 

Aquatic macrophytes, 

Najas sp., Ceratophyllum 

sp. and Ipomea sp. 

 

- 

 

- 

Destroyed or badly 

scorched one week 

after application 

25,000 Ferguson et al. 

1965 

Pondweed,  

Potamogeton crispus 

- 5 hr Decayed in 6 days 20,000 Unrau et al. 1965 

Aquatic macrophyte, 

Elodea densa 

- 24 hr Cell deterioration 500 van Overbeek et al. 

1959 

Protozoan, 

Entosiphon sulcatum 

- 72 hr Toxic 

concentration 

850 Bringmann and 

Kuhn 1978 

Snail (adult), 

Australorbis glabratus 

- 24 hr 98% mortality 10,000 Ferguson et al. 

1961 

Snail (embryo), 

Australorbis glabratus 

- 24 hr 100% mortality 10,000 Ferguson et al. 

1961 

Asiatic clam (veliger), 

Corbicula fluminea 

- 24 hr EC50 300 Foster 1981 

Cladoceran, 

Ceriodaphnia dubia 

- 48 hr LC50 

(fed) 

400 Union Carbide 

Corporation 1997 



Table 6.  Other Data on Effects of Acrolein on Aquatic Organisms (continued). 
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Species 

 

 

Chemical 

 

 

Duration 

 

 

Effect 

 

Concentration 

  (g/L)      

 

 

Reference      

FRESHWATER SPECIES 
 

Cladoceran, 

Ceriodaphnia dubia 

- 7 days Chronic value 

(reproduction) 

140 Union Carbide 

Corporation 1997 

Mayfly (nymph), 

Ephemerella walkeri 

- 1 hr Avoidance >100 Folmar 1978 

Midge (1
st
 instar), 

Chironomus sp. 

- 24 hr LC50 2,830 Venturino et al. 

2007 

Black fly (last instar), 

Simulium sp. 

- 24 hr LC50 600 Venturino et al. 

2007 

Coho salmon  

(12-17 months old), 

Oncorhynchus kisutch 

- 96 hr Adverse 

histological effects 

on gill, kidney and 

liver 

50 Lorz et al.1979 

Chinook salmon 

(fingerling), 

Oncorhynchus 

tshawytscha 

- 24 hr LC50 80 Bond et al. 1960 

Rainbow trout 

(fingerling), 

Oncorhynchus mykiss 

- 24 hr LC50 65 Bond et al. 1960 

Rainbow trout (fry), 

Oncorhynchus mykiss 

- 24 hr LC50 140 Folmar 1976 

Rainbow trout (fry), 

Oncorhynchus mykiss 

- 1 hr Avoidance 100 Folmar 1976 

Rainbow trout, 

Oncorhynchus mykiss 

92% 48 hr 32% mortality 48 Bartley and 

Hattrup 1975 

Rainbow trout, 

Oncorhynchus mykiss 

- 4 hr Tainted flesh at 1 

and 4 days post 

exposure 

90 Folmar 1980 

Brown trout (fingerling), 

Salmo trutta 

- 24 hr Mean time to death 46 Burdick et al. 1964 

Goldfish (6.2 cm), 

Carassius auratus 

- 24 hr LC50 

(aerated) 

<80 Bridie et al. 1979 

Fathead minnow, 

Pimephales promelas 

- 6 days Incipient LC50 84 Macek et al. 1976 



Table 6.  Other Data on Effects of Acrolein on Aquatic Organisms (continued). 
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Species 

 

 

Chemical 

 

 

Duration 

 

 

Effect 

 

Concentration 

    (g/L)      

 

 

Reference      

FRESHWATER SPECIES 
 

Fathead minnow, 

Pimephales promelas 

- 48 hr LC50 115 Louder and 

McCoy 1962 

Bluegill (fingerling), 

Lepomis macrochirus 

- 24 hr Mean time to death 79 Burdick et al. 1964 

Bluegill (92  9mm), 

Lepomis macrochirus 

- 1 hr Adverse effect on 

cough frequency 

70 Carlson 1990 

Mosquitofish, 

Gambusia affinis 

- 48 hr LC50 61 Louder and 

McCoy 1962 

      

SALTWATER SPECIES 
 

Barnacle (adult), 

Balanus eburneus 

92% 48 hr LC50 

(aerated) 

2,100 Dahlberg 1971 

Barnacle (adult), 

Balanus eburneus 

92% 48 hr LC50 

(aerated) 

1,600 Dahlberg 1971 

Eastern oyster, 

Crassostrea virginica 

- 96 hr 55 

(shell growth) 

55 Butler 1965a  

Mussel (1.5 mm), 

Mytilus edulis 

- 24 hr Detachment 600 Rustenbil 1981 

Longnose killifish 

(juvenile), 

Fundulus similis 

- 48 hr LC50 240 Butler 1965b 

Mayer 1987 
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